Biradical vs singlet oxygen photogeneration in suprofen–cholesterol systems
نویسندگان
چکیده
Cholesterol (Ch) is an important lipidic building block and a target for oxidative degradation, which can be induced via free radicals or singlet oxygen ((1)O2). Suprofen (SP) is a nonsteroidal anti-inflammatory drug that contains the 2-benzoylthiophene (BZT) chromophore and has a π,π* lowest triplet excited state. In the present work, dyads (S)- and (R)-SP-α-Ch (1 and 2), as well as (S)-SP-β-Ch (3) have been prepared from β- or α-Ch and SP to investigate the possible competition between photogeneration of biradicals and (1)O2, the key mechanistic steps in Ch photooxidation. Steady-state irradiation of 1 and 2 was performed in dichloromethane, under nitrogen, through Pyrex, using a 400 W medium pressure mercury lamp. The spectral analysis of the separated fractions revealed formation of two photoproducts 4 and 5, respectively. By contrast, under the same conditions, 3 did not give rise to any isolable Ch-derived product. These results point to an intramolecular hydrogen abstraction in 1 and 2 from the C7 position of Ch and subsequent C-C coupling of the generated biradicals. Interestingly, 2 was significantly more photoreactive than 1 indicating a clear stereodifferentiation in the photochemical behavior. Transient absorption spectra obtained for 1-3 were very similar and matched that described for the SP triplet excited state (typical bands with maxima at ca. 350 nm and 600 nm). Direct kinetic analysis of the decay traces at 620 nm led to determination of triplet lifetimes that were ca. 4.1 μs for 1 and 2 and 5.8 μs for 3. From these data, the intramolecular quenching rate constants in 1 and 2 were determined as 0.78 × 10(5) s(-1). The capability of dyads 1-3 to photosensitize the production of singlet oxygen was assessed by time-resolved near infrared emission studies in dichloromethane using perinaphthenone as standard. The quantum yields (ΦΔ) were 0.52 for 1 and 2 and 0.56 for 3. In conclusion, SP-α-Ch dyads are unique in the sense that they can be used to photogenerate both biradicals and singlet oxygen, thus being able to initiate Ch oxidation from their triplet excited states following either of the two competing mechanistic pathways.
منابع مشابه
Diels-Alder reaction of acenes with singlet and triplet oxygen -- theoretical study of two-state reactivity.
An interesting change in mechanism (from concerted to biradical) is described for the reaction of acenes (benzene through pentacene) with molecular oxygen (either singlet oxygen, 1Deltag-O2, or triplet oxygen, 3Sigmag-O2).
متن کاملSinglet and triplet potential surfaces for the O2+C2H4 reaction.
Electronic structure calculations at the CASSCF and UB3LYP levels of theory with the aug-cc-pVDZ basis set were used to characterize structures, vibrational frequencies, and energies for stationary points on the ground state triplet and singlet O(2)+C(2)H(4) potential energy surfaces (PESs). Spin-orbit couplings between the PESs were calculated using state averaged CASSCF wave functions. More a...
متن کاملPhotoreactivity of aged human RPE melanosomes: a comparison with lipofuscin.
PURPOSE To determine whether aging is accompanied by changes in aerobic photoreactivity of retinal pigment epithelial (RPE) melanosomes isolated from human donors of different ages, and to compare the photoreactivity of aged melanosomes with that of RPE lipofuscin. METHODS Human RPE pigment granules were isolated from RPE cells pooled into groups according to the age of the donors. Photoreact...
متن کاملSynthesis, singlet oxygen photogeneration and DNA photocleavage of porphyrins with nitrogen heterocycle tails.
Eight novel compounds were prepared by reaction of 5-(bromo- propoxyphenyl)-10,15,20-triphenylporphyrin with oxazole thiols, 1,3,4-oxadiazole thiols and 1,3,4-thiadiazole thiols, and their structures confirmed by UV-vis, IR, 1H-NMR, MS and elemental analysis. The assessment of indirectly measured 1O(2) production rates against 5,10,15,20-tetraphenyl porphyrin (H(2)TPP) were described and the re...
متن کامل